Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 12: 737406, 2021.
Article in English | MEDLINE | ID: covidwho-1450813

ABSTRACT

IL-7/IL-7R signaling is critical for development, maturation, maintenance and survival of many lymphocytes in the thymus and periphery. IL-7 has been used as immunotherapy in pre-clinical and clinical studies to treat cancer, HIV infection and sepsis. Here, we discuss the critical function of IL-7 in diagnosis, prognosis and treatment of COVID-19 patients. We also summarize a promising role of IL-7 as a vaccine adjuvant. It could potentially enhance the immune responses to vaccines especially against SARS-CoV-2 or other new vaccines.


Subject(s)
Adjuvants, Immunologic , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Interleukin-7/immunology , SARS-CoV-2/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Humans , Immunogenicity, Vaccine/immunology , Interleukin-7/metabolism , Receptors, Interleukin-7/metabolism
2.
J Intern Med ; 290(3): 677-692, 2021 09.
Article in English | MEDLINE | ID: covidwho-1255442

ABSTRACT

BACKGROUND: Prognostic markers for disease severity and identification of therapeutic targets in COVID-19 are urgently needed. We have studied innate and adaptive immunity on protein and transcriptomic level in COVID-19 patients with different disease severity at admission and longitudinally during hospitalization. METHODS: Peripheral blood mononuclear cells (PBMCs) were collected at three time points from 31 patients included in the Norwegian SARS-CoV-2 cohort study and analysed by flow cytometry and RNA sequencing. Patients were grouped as either mild/moderate (n = 14), severe (n = 11) or critical (n = 6) disease in accordance with WHO guidelines and compared with patients with SARS-CoV-2-negative bacterial sepsis (n = 5) and healthy controls (n = 10). RESULTS: COVID-19 severity was characterized by decreased interleukin 7 receptor alpha chain (CD127) expression in naïve CD4 and CD8 T cells. Activation (CD25 and HLA-DR) and exhaustion (PD-1) markers on T cells were increased compared with controls, but comparable between COVID-19 severity groups. Non-classical monocytes and monocytic HLA-DR expression decreased whereas monocytic PD-L1 and CD142 expression increased with COVID-19 severity. RNA sequencing exhibited increased plasma B-cell activity in critical COVID-19 and yet predominantly reduced transcripts related to immune response pathways compared with milder disease. CONCLUSION: Critical COVID-19 seems to be characterized by an immune profile of activated and exhausted T cells and monocytes. This immune phenotype may influence the capacity to mount an efficient T-cell immune response. Plasma B-cell activity and calprotectin were higher in critical COVID-19 while most transcripts related to immune functions were reduced, in particular affecting B cells. The potential of these cells as therapeutic targets in COVID-19 should be further explored.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Leukocytes, Mononuclear/immunology , Transcriptome , Adaptive Immunity , Adult , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , HLA-DR Antigens/immunology , Humans , Immunity, Innate , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-7/immunology , Leukocyte L1 Antigen Complex/blood , Male , Middle Aged , Monocytes/immunology , Phenotype , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , Thromboplastin/immunology , Thromboplastin/metabolism
3.
Signal Transduct Target Ther ; 6(1): 126, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1147832

ABSTRACT

The efficient induction and long-term persistence of pathogen-specific memory CD8 T cells are pivotal to rapidly curb the reinfection. Recent studies indicated that long-noncoding RNAs expression is highly cell- and stage-specific during T cell development and differentiation, suggesting their potential roles in T cell programs. However, the key lncRNAs playing crucial roles in memory CD8 T cell establishment remain to be clarified. Through CD8 T cell subsets profiling of lncRNAs, this study found a key lncRNA-Snhg1 with the conserved naivehi-effectorlo-memoryhi expression pattern in CD8 T cells of both mice and human, that can promote memory formation while impeding effector CD8 in acute viral infection. Further, Snhg1 was found interacting with the conserved vesicle trafficking protein Vps13D to promote IL-7Rα membrane location specifically. With the deep mechanism probing, the results show Snhg1-Vps13D regulated IL-7 signaling with its dual effects in memory CD8 generation, which not just because of the sustaining role of STAT5-BCL-2 axis for memory survival, but more through the STAT3-TCF1-Blimp1 axis for transcriptional launch program of memory differentiation. Moreover, we performed further study with finding a similar high-low-high expression pattern of human SNHG1/VPS13D/IL7R/TCF7 in CD8 T cell subsets from PBMC samples of the convalescent COVID-19 patients. The central role of Snhg1-Vps13D-IL-7R-TCF1 axis in memory CD8 establishment makes it a potential target for improving the vaccination effects to control the ongoing pandemic.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Interleukin-7/immunology , Proteins/immunology , RNA, Long Noncoding/immunology , SARS-CoV-2/immunology , Secretory Vesicles/immunology , Signal Transduction/immunology , Animals , Biological Transport, Active , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Humans , Immunologic Memory , Mice , Secretory Vesicles/pathology
4.
Signal Transduct Target Ther ; 5(1): 235, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-841900

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to respiratory illness and multi-organ failure in critically ill patients. Although the virus-induced lung damage and inflammatory cytokine storm are believed to be directly associated with coronavirus disease 2019 (COVID-19) clinical manifestations, the underlying mechanisms of virus-triggered inflammatory responses are currently unknown. Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells. The processed inflammatory cytokines are released through the virus-induced necroptosis pathway. Virus-induced apoptosis, necroptosis, and inflammation activation were also observed in the lung sections of SARS-CoV-2-infected HFH4-hACE2 transgenic mouse model, a valid model for studying SARS-CoV-2 pathogenesis. Furthermore, analysis of the postmortem lung sections of fatal COVID-19 patients revealed not only apoptosis and necroptosis but also massive inflammatory cell infiltration, necrotic cell debris, and pulmonary interstitial fibrosis, typical of immune pathogenesis in the lung. The SARS-CoV-2 infection triggered a dual mode of cell death pathways and caspase-8-dependent inflammatory responses may lead to the lung damage in the COVID-19 patients. These discoveries might assist the development of therapeutic strategies to treat COVID-19.


Subject(s)
Apoptosis/immunology , Betacoronavirus/pathogenicity , Caspase 8/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Necroptosis/immunology , Pneumonia, Viral/immunology , Pulmonary Fibrosis/immunology , Animals , COVID-19 , Caspase 8/genetics , Cell Line, Tumor , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-7/genetics , Interleukin-7/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , SARS-CoV-2 , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL